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1. Abstract 
 
In this paper, I present and explain Fermat’s Last Theorem. I will go through the history of 
how this marvelous theory took 350 years to prove. The mathematical methods used to 
prove the theorem in this paper could be the proof that Fermat used and was too large to fit 
in the margin of the Arithmatica. These methods used were known during Fermat’s time 
during the 17th century. Every mathematician has shown some interest in finding the proof 
since Fermat’s statement in the Arithmatica. However, Andrew Wiles was the first 
mathematician to be able to prove the theorem in 1995. Since Fermat was a professional 
lawyer and math was more like his hobby, he would have a simple proof for the theorem. 
Therefore, this is a simple proof that can be easily understood by anyone. 
 
2. Background 
 
Fermat’s Last Theorem (FLT) is a theory conjectured by Pierre de Fermat in the 17th century. 
The theorem expressed how there is no positive integers a, b, and c that would satisfy the 
equation 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 where 𝑛 ≥ 3. This theorem remained unsolved for 350 years. It is 
easy to prove something, however, disproving something is very problematic as there are 
infinitely many numbers. In the same way, there are infinite possibilities for the value of a, 
b, and c and trying every value is a bit problematic. Until it proved Andrew Wiles in 1995. 
 
This theorem has a very complex history with multiple mathematicians trying to prove the 
theorem for 350 years. The theory was first stated by Fermat in 1637. He wrote the theorem 
on a copy of a copy of Diophantus' Arithmetica that he acquired. However, he did not prove 
the theorem as it was too large to fit on the margin of the book. He claimed that he had a 
proof, but that the margin of his book was not large enough to contain it. 

The theorem remained unsolved for over 350 years, despite the efforts of many 
mathematicians. One of the biggest obstacles to proving the theorem was the lack of a 
general theory of numbers that could be used to tackle such a problem. In the 19th century, 
mathematicians like Legendre, Kummer, Gauss, Euler, Sophie Germain, Jacobi, and Dirichlet 
made significant progress in developing such a theory, but it was not until the 20th century 
that the necessary tools were in place to tackle Fermat's Last Theorem. Many proofs for 
specific exponents were proved through the years. Fermat proved the theorem when n = 4 
in 1637. Then Euler solved the theorem when n = 3 in 1753, Legendre proved it when n = 5 
in 1825, Lame proved it when n = 7 in 1839 and Kummer proved it when n < 100 and 𝑛 ≥ 3 
in 1857. 

But it wasn’t until 1995, that Andrew Wiles proved the theorem. By using Ribet’s Theorem 
and proving the modularity theorem for semi-stable elliptical curves Andrew Wiles was able 
to prove Fermat’s Last theorem. Mathematicians are still trying to figure out a simple proof 
for the theorem trying to mimic the proof used by Fermat in 1637. Additionally, Fermat's 
Last Theorem has sparked interest among non-mathematicians and has been the subject of 
numerous books and articles. It is often cited as an example of the beauty and elegance of 
mathematics and the power of human reason. 

https://en.wikipedia.org/wiki/Arithmetica
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Here is one of the simple proofs for the theorem. This could be the theorem used by Fermat 
in 1637, however, we can never be sure. I have presented two lemmas that will help me 
prove the theorem. 

3. Lemmas 
 
Lemma 3.1. For all positive integers, if 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 and 𝑛 ≥ 2, then there exists a triplet 
(x, y, z) such that 

 
𝑎 = 𝑦 + 𝑧  𝑏 = 𝑥 + 𝑧   𝑐 = 𝑥 + 𝑦 + 𝑧 

 
where, gcd(x, y) = gcd(c, x) = gcd(c, y) = 1 and 𝑧 ≡ 0 (𝑚𝑜𝑑 (𝑟𝑎𝑑(𝑥𝑦)). gcd stands for the 
greatest common divisor and rad stands for radical. The radical of an integer is the product 
of its prime factors. 
 
Proof – Assume a, b, c ,and n are positive integers such that 

 
𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 

 
If a, b, and c have any common prime factors then they will cancel each other out on both 
sides of the equation above. Therefore, we can probably assume that a and b are coprime. 
Therefore, by standard arithmetic, we have 𝑐𝑛 > 𝑎𝑛 and 𝑐𝑛 > 𝑏𝑛. This implies that 𝑐 > 𝑎 
and 𝑐 > 𝑏. But the binomial theorem tells us 
 

(3.1)  (𝑎 + 𝑏)𝑛 =  𝑎𝑛 + 𝑏𝑛 + ∑ (𝑛
𝑖
)𝑎𝑛−𝑖𝑏𝑖

𝑛−1

𝑖=1
=  𝑐𝑛 + ∑ (𝑛

𝑖
)𝑎𝑛−𝑖𝑏𝑖

𝑛−1

𝑖=1
 , 

 

where the binomial coefficient is defined as (𝑛
𝑖
) = 

𝑛!

[(𝑖!)(𝑛−𝑖)!]
 . Since the summation 

 

∑ (𝑛
𝑖
)𝑎𝑛−𝑖𝑏𝑖

𝑛−1

𝑖=1
≥ 0, 

 
therefore, 

 
(3.2)     (𝑎 + 𝑏)𝑛 ≥ 𝑐𝑛, 
 
which suggests that 𝑎 + 𝑏 > 𝑐 for any integer 𝑛 ≥ 2. Therefore, 𝑐 > 𝑎, 𝑐 > 𝑏, and a+𝑏 > 𝑐 
for any integer 𝑛 ≥ 2. This implies that there exist positive integers x and y such that 
 
(3.3)    𝑐 = 𝑎 + 𝑥   𝑥 < 𝑏 
 
(3.4)    𝑐 = 𝑏 + 𝑦   𝑦 < 𝑎 
 
Since 𝑎 +  𝑏 > 𝑐 (using equations 3.3 and 3.4) 
 
(3.5)    2𝑐 = 𝑎 + 𝑏 + 𝑥 + 𝑦 > 𝑐 + 𝑥 + 𝑦 
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(3.6)     𝑐 > 𝑥 + 𝑦 
 

Therefore, there exists another positive integer z such that 
 
(3.7)     𝑐 = 𝑥 + 𝑦 + 𝑧 
 
(3.8)     𝑎 = 𝑐 − 𝑥 = 𝑦 + 𝑧 
 
(3.9)     𝑏 = 𝑐 − 𝑦 = 𝑥 + 𝑧 
 
Using equations 3.3 and 3.4 , 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 can be written as 
 
(3.10)     𝑎𝑛 + 𝑏𝑛 = (𝑎 + 𝑥)𝑛 
 
and 
 
(3.11)     𝑎𝑛 + 𝑏𝑛 = (𝑏 + 𝑦)𝑛. 
 
Now we can use the binomial theorem to expand the right side of the equations above 
 

(3.12)    𝑥𝑛 + ∑ (𝑛
𝑖
)𝑎𝑖𝑥𝑛−𝑖

𝑛−1

𝑖=1
− 𝑏𝑛 = 0 

and 

(3.13)    𝑦𝑛 + ∑ (𝑛
𝑖
)𝑏𝑖𝑦𝑛−𝑖

𝑛−1

𝑖=1
− 𝑎𝑛 = 0 

 
From the equations (3.12 and 3.13) above we can say that 
 

𝑏𝑛 ≡ 0 (𝑚𝑜𝑑 𝑥) 
 

𝑎𝑛 ≡ 0 (𝑚𝑜𝑑 𝑦) 
 
This means that 
 

𝑏 ≡ 0 (𝑚𝑜𝑑 𝑟𝑎𝑑(𝑥)) 
 

𝑎 ≡ 0 (𝑚𝑜𝑑 𝑟𝑎𝑑(𝑦)) 
 
Since the positive integers a, b, c are coprime gcd(x, y) = gcd(c, x) = gcd(c, y) = 1 
 
Using equations 3.7, 3.8 and 3.9, 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 can be written as 
 

(𝑦 + 𝑧)𝑛 + (𝑥 + 𝑧)𝑛 = (𝑥 + 𝑦 + 𝑧)𝑛 
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If this equation is simplified using the binominal theorem, then we get 
 

𝑧𝑛 =  
1

2
𝑛(𝑛 − 1)𝑧𝑛−2[(𝑥 + 𝑦)2 − (𝑥2 + 𝑦2)] 

+
1

6
𝑛(𝑛 − 1)(𝑛 − 2)𝑧𝑛−3[(𝑥 + 𝑦)3 − (𝑥3 + 𝑦3)] 

+….+𝑛𝑧[(𝑥 + 𝑦)𝑛−1 − (𝑥𝑛−1 + 𝑦𝑛−1)] + [(𝑥 + 𝑦)𝑛 − (𝑥𝑛 + 𝑦𝑛)] 
 

∴ 𝑧𝑛 = 𝑥𝑦[𝑛(𝑛 − 1)𝑧𝑛−2 +
1

2
𝑛(𝑛 − 1)(𝑛 − 2)𝑧𝑛−3(𝑥 + 𝑦) +…. 

+𝑛𝑧 ∑ (
𝑛 − 1

𝑖
)

𝑛−2

𝑖=1

(𝑥𝑛−𝑖−2)(𝑦𝑖−1) + ∑ (
𝑛

𝑖
)

𝑛−1

𝑖=1

(𝑥𝑛−𝑖−1)(𝑦𝑖−1) 

 
Therefore, the equation above shows that 𝑧 ≡ 0 (𝑚𝑜𝑑 (𝑟𝑎𝑑(𝑥𝑦)). Hence, we have proved 
that for positive integers if 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 and 𝑛 ≥ 2, then there exists a triplet (x, y, z) such 
that 
 

𝑎 = 𝑦 + 𝑧  𝑏 = 𝑥 + 𝑧   𝑐 = 𝑥 + 𝑦 + 𝑧, 
 
where gcd(x, y) = gcd(c, x) = gcd(c, y) = 1 and 𝑧 ≡ 0 (𝑚𝑜𝑑 (𝑟𝑎𝑑(𝑥𝑦)). 
 
 
Lemma 3.2. If a and b are positive integers, then 

 
𝑎𝑛 + 𝑏𝑛 = (𝑎 + 𝑏)(𝑎𝑛−1 − 𝑎𝑛−2𝑏 + 𝑎𝑛−3𝑏2 −……−𝑎𝑏𝑛−2 + 𝑏𝑛−1), 

 
for any odd integer n. 
 
Proof – By multiplicative identities, we can show that 
 
(3.15)    (𝑎 + 𝑏)(𝑎2 − 𝑎𝑏 + 𝑏2) =  𝑎3 + 𝑏3 
 
(3.16)   (𝑎 + 𝑏)(𝑎4 − 𝑎3𝑏 + 𝑎2𝑏2 − 𝑎𝑏3 + 𝑏4) =  𝑎5 + 𝑏5 
 
And so on as the powers keep increasing. Thus, we can show this for any odd integer n 
 
𝑎𝑛 + 𝑏𝑛 = (𝑎 + 𝑏)(𝑎𝑛−1 − 𝑎𝑛−2𝑏 + 𝑎𝑛−3𝑏2 − 𝑎𝑛−4𝑏3……+𝑎2𝑏𝑛−3 − 𝑎𝑏𝑛−2 + 𝑏𝑛−1) 
 
4. Proof of Fermat’s Last Theorem 

 
Suppose x and y are positive integers, where 𝑛 = 𝑥𝑦. If 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 has solutions that are 
positive integers, then (𝑎𝑥)𝑦 + (𝑏𝑥)𝑦 = (𝑐𝑥)𝑦 would have (𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘), which are positive 
integers , as solutions when 𝑛 = 𝑦. When 𝑛 ≥ 3 either n is an odd prime greater than 3, n is 
a multiple of an odd prime greater than 3, or 𝑛 = 2𝑥, when 𝑥 ≥ 2, which can be written as 
𝑛 = 4(2𝑥−2) 
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Therefore, to prove Fermat’s little theorem we need to prove that 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 has no 
solutions. We need to prove that the equation has no solution when n = 4 and when n is an 
odd prime ≥ 3. Therefore, Fermat’s little theorem is divided into 2 parts. If we prove that n 
has no solution in both cases, then we have proved FLT. 
 
Theorem 4.1. If n is an odd prime ≥ 3, then the equation 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 has no positive 
integer solutions 
 
Proof – According to Lemma 3.1, for positive integers, if 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 and 𝑛 ≥ 2, then 
there exists a triplet (x,y,z) such that 
 
(4.1)  𝑎 = 𝑦 + 𝑧  𝑏 = 𝑥 + 𝑧   𝑐 = 𝑥 + 𝑦 + 𝑧 
 
where gcd(x, y) = gcd(c, x) = gcd(c, y) = 1 and 𝑧 ≡ 0 (𝑚𝑜𝑑 (𝑟𝑎𝑑(𝑥𝑦)). 
 
We also know that 
 
(4.2)  𝑎 + 𝑏 = (𝑦 + 𝑧) + (𝑥 + 𝑧) = (𝑥 + 𝑦 + 𝑧) + 𝑧 = 𝑐 + 𝑧 
 
According to Lemma 3.2, for any odd integer 𝑛 ≥ 3 
 
𝑎𝑛 + 𝑏𝑛 = (𝑎 + 𝑏)(𝑎𝑛−1 − 𝑎𝑛−2𝑏 + 𝑎𝑛−3𝑏2 − 𝑎𝑛−4𝑏3……+𝑎2𝑏𝑛−3 − 𝑎𝑏𝑛−2 + 𝑏𝑛−1) 
 
Then for any odd integer 𝑛 ≥ 3 

 
𝑐𝑛 = 𝑎𝑛 + 𝑏𝑛 = (𝑎 + 𝑏)(𝑎𝑛−1 − 𝑎𝑛−2𝑏 + 𝑎𝑛−3𝑏2 − 𝑎𝑛−4𝑏3……+𝑎2𝑏𝑛−3 

−𝑎𝑏𝑛−2 + 𝑏𝑛−1) 
 
However, as proved by equation 4.2, 𝑎 + 𝑏 = 𝑐 + 𝑧. This cannot be a factor of 𝑐𝑛, because 
according to Lemma 3.1, gcd(x, y) = gcd(c, x) = gcd(c, y) = 1 and 𝑧 ≡ 0 (𝑚𝑜𝑑 (𝑟𝑎𝑑(𝑥𝑦)). 
Therefore, a clear contradiction is depicted proving that the equation 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 has no 
solution when n is an odd prime greater than 3. Hence Theorem 4.1. is proved. 
 
Theorem 4.2. There are no positive integer solutions for the equation 𝑎4 + 𝑏4 = 𝑐4 
 
Proof – Assume that for the equation 𝑎4 + 𝑏4 = 𝑣2  there is a positive integer solution 
where the gcd(a, b) = 1 and 𝑣 = 𝑐2. Therefore, (𝑎2, 𝑏2, 𝑣) is basically a Pythagoras triplet. 
For the equation, 𝑎4 + 𝑏4 = 𝑣2. Therefore 
 
 
(4.4)  𝑎2 = 𝑥2 − 𝑦2   𝑏2 = 2𝑥𝑦   𝑣 = 𝑥2 + 𝑦2 
 
where 𝑥 > 𝑦 > 0 and gcd(x, y) = 1. Therefore 𝑎2 + 𝑦2 = 𝑥2. Therefore, again the (a, y, x) is 
a Pythagoras triplet of the equation 𝑎2 + 𝑦2 = 𝑥2. Therefore 
 
(4.5)  𝑎 = 𝑘2 − 𝑙2   𝑦 = 2𝑘𝑙   𝑥 = 𝑘2 + 𝑙2 
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where 𝑘 > 𝑙 > 0 and gcd(k, l) = 1. Using the equations in 4.5, 
 
(4.6)     𝑏2 = 4(𝑘2 + 𝑙2)𝑘𝑙 
 
or 
 

(4.7)     (
𝑏

2
)2 = (𝑘2 + 𝑙2)𝑘𝑙 

 
The above equations are only true when k, l, and 𝑘2 + 𝑙2 are squared integers. Therefore, 
we can further write them as 
 
(4.8)   𝑘 = (𝑎1)2  𝑦 = (𝑏1)2   𝑘2 + 𝑙2 = (𝑣1)2 
 
Therefore, we can say that 
 
(4.9)     𝑎14 + 𝑏14 = 𝑣12 
 
This depicts how we have a new solution for the equation 𝑎4 + 𝑏4 = 𝑣2. 
 
(4.10)  𝑣 = 𝑥2 + 𝑦2 = (𝑘2 + 𝑙2)2 + (2𝑘𝑙)2 = 𝑣14 + 4(𝑎1)4(𝑏1)4 
 
This implies that 𝑣 > 𝑣1. According to the proof by infinite descent or Fermat's method of 
descent this is a contradiction as the solution cannot be shrinking indefinitely. Therefore, 
there is no positive integers that satisfy the equation 𝑎4 + 𝑏4 = 𝑐4. 

 
5. Results 
 
The proof of theorem 4.1 and 4.2 proves that there is no positive integer solution for the 
equation 
 

𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 
 
when 𝑛 ≥ 3. Hence, we have proved Fermat’s Last Theorem. 

This result was proven by Andrew Wiles in 1994, after many years of work. Wiles's proof 
was a landmark achievement in mathematics, and it has been hailed as one of the greatest 
achievements of the 20th century. 

6. Applications 
 

There are several possible applications of Fermat’s Last Theorem. The FLT can be used as a 
starting point to explore more complex topics in number theory. The theorem helps prove 
the non-existence of certain types of numbers. There are a lot of numbers that do satisfy 
the equation 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 as proven by FTL. The theorem can also be used to study the 
distribution of prime numbers, elliptic curves, and modular forms in number theory. It can 
be used to study the properties of Diophantine equations and the solutions they may or 
may not have. 
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Another application of FTL is cryptography. In RSA, a sender can encrypt a message by 
raising it to a power determined by the recipient's public key, and the recipient can decrypt 
the message by raising the encrypted message to a power determined by their private key. 
The security of the RSA algorithm relies on the fact that it is computationally infeasible to 
determine the private key from the public key, and this is typically achieved by using very 
large composite numbers as the keys. Fermat’s Last Theorem can be used to prove the non-
existence of certain types of numbers that could potentially be used to break the RSA 
algorithm. For example, the theorem proves that there is no positive integer solution for the 
equation 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 when 𝑛 ≥ 3, which means that RSA keys cannot be constructed 
using these types of numbers. This helps to ensure the security of the RSA algorithm, as it 
makes it more difficult for attackers to find ways to factor in the large composite numbers 
that are used as keys. 
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